skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Asadi, Sina"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Stochastic computing (SC) is a reemerging computing paradigm that oers low-cost and noise-resilient hardware designs for a variety of arithmetic functions. In SC, circuits operate on uniform bit-streams, where the value is encoded by the probability of observing ‘1’s in the stream. The accuracy of SC operations highly depends on the correlation between input bit-streams. Some operations, such as minimum and maximum, require highly correlated inputs, whereas others like multiplication demand uncorrelated or statistically independent inputs for accurate results. Developing low-cost and accurate correlation manipulation circuits is critical, as they allow correlation management without incurring the high cost of bit-stream regeneration. This work introduces novel in-stream correlator and decorrelator circuits capable of: 1) adjusting correlation between stochastic bit-streams and 2) controlling the distribution of ‘1’s in the output bit-streams. Compared to state-of-the-art (SoA) approaches, our designs oer improved accuracy and reduced hardware overhead. The output bit-streams enjoy low-discrepancy (LD) distribution, leading to higher quality of results. To further increase the accuracy when dealing with pseudo-random inputs, we propose an enhancement module that balances the number of ‘1’s across adjacent input segments. We show the eectiveness of the proposed techniques through two application case studies: SC design of sorting and median filtering. 
    more » « less
    Free, publicly-accessible full text available November 1, 2026
  2. Stochastic computing (SC) division circuits have gained importance in recent years compared to other arithmetic circuits due to their low complexity as a result of an accuracy tradeoff. Designing a division circuit is already complex in conventional binary-based hardware systems. Developing an accurate and efficient SC division circuit is an open research problem. Prior work proposed different SC division circuits by using multiplexers and JK-flip-flop units, which may require correlated or uncorrelated input bit-streams. This study is primarily centered on exploring a cost-effective and highly efficient bit-stream generator specifically designed for SC division circuits. In conjunction with this objective, we assess the performance of multiple bit-stream generators and analyze the impact of correlation on SC division. We compare different designs in terms of accuracy and hardware cost. Moreover, we discuss a low-cost and energy-efficient bit-stream generator via powers-of-2 Van der Corput (VDC) sequences. Among the tested sequence generators, our best results were achieved with VDC sequences. Our evaluation results demonstrate that the novel VDC-based design yields promising outputs, resulting in a 15.5% reduction in the area-delay product and an 18.05% saving in energy consumption for the same accuracy level compared to conventional bit-stream generators. Significantly, our investigation reveals that employing the proposed generator improves the precision compared to the state-of-the-art. We validate the proposed architecture with an image processing case study, achieving high PSNR and structural similarity values. 
    more » « less